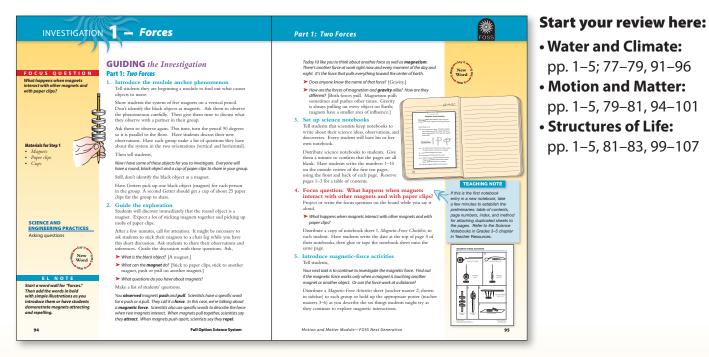
South Carolina Science Grade 3 Overview

FOSS Next Generation is the most engaging K-8 science program for the College- and Career-Ready Standards (SCCCR). This document has been created to guide grade 3 teachers and evaluators through the FOSS components, local and relevant anchor phenomena, and a critical pathway through the modules.

Navigation Guide

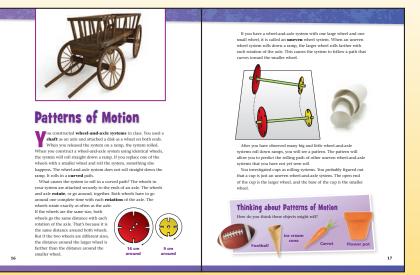

How to Review FOSS

Teacher Editions

The *Investigations Guide* is a spiral-bound guide containing the active investigations. FOSS lesson plans include:

- Materials used in the current steps
- Key three-dimensional highlights
- Embedded assessment "What to Look For"
- Sense-making discussions

- Strategies to support English learners
- Vocabulary review
- Teaching notes to facilitate instruction



Teacher Resources (also online) contains teacher-support chapters on three-dimensional teaching and learning, connections to Common Core, access and equity, and environmental literacy.

Student Books

The **FOSS Science Resources** student book contains readings developed to reinforce and extend core ideas covered during FOSS active investigations. Readings give students opportunities to:

- Ask and answer questions
- Use evidence to support their ideas
- Use text to acquire information
- Draw information from multiple sources
- Interpret illustrations to build understanding

Also available in Spanish and as interactive eBooks.

FOSSweb on ThinkLink

Technology for Learning Anywhere

FOSSweb digital resources are located on ThinkLink, School Specialty's new cloud-based curriculum platform.

FULL OPTION	Nashua Elementary DA	SHBOARD CONTEN	T USERS	REPORTS AL	MIN FULL OPTION	N SCIENCE SYSTEM	0 (
÷	View [Details: Motion and I	Matter				
	Motion and Matter Motion and Matter provides grade 3 students with experience torces and interactions, matter and its interactions, and with Resource type: All Resources (219)				LAUNCH CO SEE M Share With Classor	NORE	
	Search for content by name					٩	
	Investigations Guide				o	PPEN	
	Student Resource eBook [ILBORG & STUDENT]				LANGU	AGE 🛩	
	Module Resources					\odot	
	Assessment					*	

Access:

- Supports easy single sign-on and class management with Google classroom and learning management systems.
- Provides easy access to both teacher and student digital resources, including duplication masters, online activities, and streaming videos.

FOSSmap Online Assessment

Students in grades 3–5 can take summative assessments online with automatic coding of most responses. Student and class level reports help you identify instructional next steps.

Preview Student	I-Check 1 Motion	and Matter (NG)
Reference	Yes	l of 6
Student A puphes on a cart with 750 units of force. Student 8 publes on the other side of the cart with 500 units of force.	What will happen to the cart? A th will start to move to the right. K to will start to move to the left. There is not enough information to know for sure. There is not enough information to know for sure. A balanced K wohlanced C working in the same direction In impossible to know without more information	
	Powered by LinkRI	

Online Activities for Differentiating Instruction

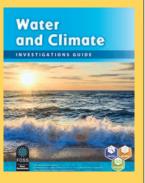
FOSSweb digital resources provide engaging, interactive virtual investigations and tutorials that offer additional content and skill support for students.

FOSS Modules—Grade 3

Module Phenomenon and Driving Question

Water and Climate Module

Anchor phenomenon: Weather in diverse climates Module driving


questions:

=OSS Module

FOSS Module

FOSS Module

- How is water involved in weather?
- Are weather conditions the same around the world and through the year?

5 investigations **Critical Pathway:** 27 sessions**

Module Overview/Bundled Performance Expectations

Water is the most important substance on Earth. Water dominates the surface of our planet, changes the face of the land, and defines life. Weather is driven by the Sun and involves the movement of water over the Earth. Climate is determined in part by the amount of precipitation in a region and by temperature fluctuations. Students engage with these ideas as they explore the properties of water, the water cycle, interactions between water and other earth material, and natural hazards due to weather interactions. They learn how humans use water as a natural resource and how societies depend on water and new technologies to conserve and protect this resource.

Earth Sciences: 3-ESS2-1, 3-ESS2-2, 3-ESS3-1, 2-ESS2-3* Physical Sciences: 2-PS1-1* ETAS: 3-5 ETS1-1, 3-5 ETS1-2, 3-5 ETS1-3

Motion and Matter Module Anchor phenomenon: Motion Module driving question:

• What causes objects to move?

4 investigations Critical Pathway: 30 sessions

Structures of Life Module

Anchor phenomenon: Diversity of plants and animals we observe in our world

Module driving questions:

- Where do organisms come from and how do they survive?
- How are all the different kinds of plants and animals able to continue to exist on Earth?

Structures of Life

4 investigations Critical Pathway: 35 sessions Students investigate physical science core ideas dealing with forces and interactions, matter and its interactions, and engineering design.

Magnetism and gravity are the anchor phenomena investigated as students look for patterns of motion to predict future motion. Students work with magnets and paper clips, wheel-and-axle systems, paper air twirlers, and rotating tops. Students use their knowledge of science to enter the engineering design process and through the process refine their science understanding. **Physical Sciences:** 3-PS2-1, 3-PS2-2, 3-PS2-3, 3-PS2-4 **ETAS:** 3-5 ETS1-1, 3-5 ETS1-2, 3-5 ETS1-3

Students experience that organisms exhibit a variety of strategies for life, have a variety of observable structures and behaviors, have varied but predictable life cycles, and reproduce their own kind by passing inherited characteristics to offspring. Students explore how individual organisms have variations in their traits that may provide an advantage in surviving in a particular environment, and how our knowledge of animals that survived in past environments is inferred by studying fossil characteristics. **Life Sciences:** 3-LS1-1, 3-LS2-1, 3-LS3-1, 3-LS3-2, 3-LS4-1, 3-LS4-2, 3-LS4-3, 3-LS4-4

* These PEs are addressed in grade 2 and extended in grade 3.

^{**} A session is 45 minutes.

Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts
 ESS2.C: The roles of water in Earth's surface processes ESS2.D: Weather and climate ESS3.A: Natural resources ESS3.B: Natural hazards PS1.A: Structures and properties of matter ETS1.A: Defining and delimiting engineering problems ETS1.B: Developing possible solutions ETS1.C: Optimizing the design solution 	 Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting data Using mathematics and computational thinking Constructing explanations and designing solutions Engaging in argument from evidence Obtaining, evaluating, and communicating information 	 Patterns Cause and effect Scale, proportion, and quantity Systems and system models
 PS2.A: Forces and motion PS2.B: Types of interactions foundational to PS2 PS1.A: Structures and properties of matter PS1.B: Chemical reactions ETS1.A: Defining and delimiting engineering problems ETS1.B: Developing possible solutions ETS1.C: Optimizing the design solution 	 Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting data Using mathematics and computational thinking Constructing explanations and designing solutions Engaging in argument from evidence Obtaining, evaluating, and communicating information 	 Patterns Cause and effect Scale, proportion, and quantity Systems and system models Energy and matter
 LS1.A: Structure and function LS1.B: Growth and development of organisms LS2.C: Ecosystem dynamics, functioning, and resilience LS2.D: Social interactions and group behavior LS3.A: Heredity: Inheritance of traits LS3.B: Variation of traits LS4.A: Evidence of common ancestry and diversity LS4.B: Natural selection LS4.C: Adaptation LS4.D: Biodiversity and humans 	 Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting data Using mathematics and computational thinking Constructing explanations and designing solutions Engaging in argument from evidence Obtaining, evaluating, and communicating information 	 Patterns Cause and effect Scale, proportion, and quantity Systems and system models Structure and function

FOSS Phenomena Storylines

Water and Climate Applications of Science

ANCHOR PHENOMENON 1 INVESTIGATION 1

After a night of rain, students notice there is a large puddle on the playground but other parts of the playground are dry. **After a rain, why is there water in some places on the playground but not others?**

CONNECTIONS TO COLLEGE- AND CAREER-READY STANDARDS

ESS2.C: The Roles of Water in Earth's Surface Processes

Patterns; Cause and Effect

Planning and Carrying Out Investigations; Developing and Using Models; Constructing Explanations

SCCCR PERFORMANCE EXPECTATION 3-ESS3-1

STORYLINE

Students plan and carry out investigations about cause-and-effect relationships about how water moves over Earth's surface. They develop and use models and construct explanations to describe patterns of interaction of water and various types of surfaces. Finally, they construct an explanation using evidence to describe interactions of water drops with materials and on slopes to explain the wet and dry areas of the playground.

ANCHOR PHENOMENON 2 INVESTIGATIONS 2–3

A student is talking to a cousin who lives in a different state and mentions they need to conserve water because they are in a drought. The cousin is confused because it has been raining almost every day for a week where they live. **What causes the impact of weather on people to be different from place to place?**

CONNECTIONS TO COLLEGE- AND CAREER-READY STANDARDS

ESS2.C: The Roles of Water in Earth's Surface Processes; **ESS2.D:** Weather and Climate

Patterns; Cause and Effect; Scale, Proportion, and Quantity

Analyzing and Interpreting Data; Constructing Explanations

SCCCR PERFORMANCE EXPECTATIONS 3-ESS2-1, 3-ESS2-2

STORYLINE

Students analyze and interpret weather data to determine patterns in weather. Next, they develop and use models to describe how the processes of evaporation and condensation cause weather conditions. Finally, they construct explanations about cause-and-effect relationships between temperature, evaporation, and condensation and to explain weather differences from place to place.

ANCHOR PHENOMENON 3 INVESTIGATION 4

One morning in February, students at a school near Oakland, CA came to school very excited, talking about the weather. They can see snow! None of them remember seeing snow near their school. **How unusual is the snowy weather condition for the region of Oakland, California?**

CONNECTIONS TO COLLEGE- AND CAREER-READY STANDARDS

ESS2.D: Weather and Climate

Patterns; Cause and Effect; Scale, Proportion, and Quantity

Analyzing and Interpreting Data; Constructing Explanations, Obtaining, Evaluating and Communicating Information

SCCCR PERFORMANCE EXPECTATIONS 3-ESS2-1, 3-ESS2-2, 3-ESS3-1

STORYLINE

Students obtain, analyze, and interpret seasonal weather for different regions to determine patterns. They construct explanations about expected weather conditions and compare those to actual weather events. Finally, they obtain information about weather-related hazards and engineering methods to minimize impact when the weather is unusual.

FOSS Phenomena Storylines

Motion and Matter Applications of Science

ANCHOR PHENOMENON 1 INVESTIGATION 1

A student wants to hang a poem and a painting from school on the refrigerator using magnets. The student hangs up the poem using one magnet. When they try to hang up the painting, the magnet does not hold the painting. The magnet and painting keep falling. **Why does the poem stay on the refrigerator, but the painting does not?**

CONNECTIONS TO COLLEGE- AND CAREER-READY STANDARDS

PS2.A: Forces and Motion; PS2.B: Types of Interactions

Patterns; Cause and Effect

Planning and Carrying Out Investigations; Developing and Using Models; Engaging in Argument from Evidence

SCCCR PERFORMANCE EXPECTATIONS 3-PS2-1, 3-PS2-2, 3-PS2-3

STORYLINE

Students encounter mysterious, floating objects (magnets). They plan and carry out investigations examining cause-and-effect relationships with magnets and varying distances between magnets. They develop a model of magnetic fields based on evidence to explain the decreasing force of attraction when the distance between magnets is increased. They engage in argumentation to explain the forces acting on a floating paper clip, including gravity, and develop a model to explain the paper clip's change in motion.

ANCHOR PHENOMENON 2 INVESTIGATIONS 2–3

Two children are riding their skateboards down a nearby hill. One child is very experienced and starts at the top of the hill. The other child is still learning and starts in the middle of the hill. They both start at the same time and neither student pushes. They are surprised to observe that they stopped at different places. **What causes two children rolling down a hill on skateboards to stop in different places?**

CONNECTIONS TO COLLEGE- AND CAREER-READY STANDARDS

PS2.A: Forces and Motion

Patterns; Cause and Effect; Systems and System Models

Asking Questions and Defining Problems; Planning and Carrying Out Investigations; Analyzing and Interpreting Data; Constructing Explanations and Designing Solutions; Obtaining, Evaluating, and Communicating Information

SCCCR PERFORMANCE EXPECTATIONS 3-PS2-1, 3-PS2-2

STORYLINE

Students construct a variety of systems with materials to determine patterns of motion as they roll, slide, and turn on a ramp. They conduct an investigation to construct an explanation of the cause-and-effect relationship between the release position on a ramp and the distance the cart travels. They collect data and construct explanations based on evidence about the change of motion as a result of unbalanced forces acting on the object.

ANCHOR PHENOMENON 3 INVESTIGATION 3

A group of students was testing a cart they built. Whenever the students tested the cart, it would roll off the table and fall apart. **How can you design a cart that will stop at the edge of the table?**

CONNECTIONS TO COLLEGE- AND CAREER-READY STANDARDS

PS2.A: Forces and Motion; **ETS1.A:** Defining and Delimiting Engineering Problems; **ETS1.B:** Developing Possible Solutions; **ETS1.C:** Optimizing the Design Solution

Patterns; Cause and Effect; Systems and System Models

Asking Questions and Defining Problems; Analyzing and Interpreting Data; Constructing Explanations and Designing Solutions

SCCCR PERFORMANCE EXPECTATIONS 3-PS2-2, 3-PS2-4, 3-5-ETS1-1, 3-5ETS1-2, 3-5-ETS1-3

STORYLINE

Students design and construct a cart with materials to apply their understanding about balanced and unbalanced forces. They apply their understanding of cause-and-effect relationships and patterns of motion as they use magnets in the design of their carts to perform a useful task.

FOSS Phenomena Storylines

Structures of Life Applications of Science

ANCHOR PHENOMENON 1 INVESTIGATIONS 1–2

In the spring, a class plants two kinds of seeds in the school garden. In Box A they plant beans and in Box B they plant corn. The students make sure the seeds get plenty of water. They check on the plant growth after several weeks. In Box A, they see bean plants but also sunflower plants. In Box B, they see tiny corn plants and pumpkin plants. **Where did the sunflower and pumpkin plants come from, and why do they look different from beans and corn?**

CONNECTIONS TO COLLEGE- AND CAREER-READY STANDARDS

- LS1.A: Structure and Function; LS1.B: Growth and Development of Organisms; LS3.A: Inheritance of Traits
- Patterns, Cause and Effect; Structure and Function

Planning and Carrying Out Investigations; Constructing Explanations; Engaging in Argument from Evidence

SCCCR PERFORMANCE EXPECTATIONS 3-LS1-1, 3-LS3-1, 3-LS3-2

STORYLINE

Students plan and carry out investigations about cause-and-effect relationships with water and seeds to figure out where plants come from. They construct explanations based on evidence about similarities and differences in the growth of different kinds of plants, their structures, and the function of those structures. Next, they gather and evaluate information about how seeds travel. Finally, students engage in argument about the patterns of plant growth and development of plants.

ANCHOR PHENOMENON 2 INVESTIGATIONS 2–3

Some students observe walking sticks living in some wood chips. As students observe more closely, they discover there are three different colors of walking sticks: green, brown-green, and brown. Students monitor the number of each color over many months, and they notice the brown ones begin to outnumber the other colors. **What is causing the change in the numbers of each color of walking stick in the wood chip environment?**

CONNECTIONS TO COLLEGE- AND CAREER-READY STANDARDS

LS2.C: Ecosystem Dynamics, Functioning, and Resilience; LS3.A: Inheritance of Traits; LS3.B: Variation of Traits; LS4.B: Natural Selection; LS4.C: Adaptation

Patterns; Cause and Effect; Systems and System Models; Structure and Function; Stability and Change

Analyzing and Interpreting Data; Developing and Using Models; Constructing Explanations

SCCCR PERFORMANCE EXPECTATIONS 3-LS1-1, 3-LS3-1, 3-LS3-2, 3-LS4-2, 3-LS4-3, 3-LS4-4

STORYLINE

Students work with simulations and gather data about walking stick survival. They analyze and interpret data to determine patterns of change in organisms in an environment. Next, they develop and use models about the change in traits in a species over time in different environments. Finally, they construct explanations based on evidence about the adaptations of organisms that allow them to survive in an environment.

ANCHOR PHENOMENON 3 INVESTIGATION 4

A group of researchers discover a huge pile of owl pellets in a cave that dates back 10,000 years. An owl pellet is a ball of undigested fur and bones that an owl spits up after eating small animals. The oldest pellets are at the bottom of the pile. **What can researchers discover about past environments by studying the bones in the owl pellet pile?**

CONNECTIONS TO COLLEGE- AND CAREER-READY STANDARDS

LS1.A: Structure and Function; LS4.A: Evidence of Common Ancestry and Diversity

Scale, Proportion, and Quantity; Systems and System Models

Planning and Carrying Out Investigations; Analyzing and Interpreting Data; Constructing Explanations

SCCCR PERFORMANCE EXPECTATIONS 3-LS3-1, 3-LS4-1

STORYLINE

Students plan and carry out investigations with owl pellets and analyze skeletal remains of a predator during a dissection. Next, they obtain and evaluate information about owl pellets found in a cave in Utah and the work of scientists. Finally, they construct explanations about predator-prey relationships and the environment in which the organisms lived.

Critical Pathway

South Carolina Science

Today, many elementary educators face the reality that time for science instruction is limited. The FOSS developers have determined a Critical Pathway through each module that is faithful to the standards in the time you have to teach with the flexibility to expand or differentiate instruction. There are 92 total sessions for grade 3.

SESSION	INV./PART	CRITICAL PATHWAY	IG PAGES
1	Inv 1.1	Drops of Water, Steps 1–8	91–92
2	Inv 1.1	Drops of Water, Steps 9–18	93–96
3	Inv 1.2	Water on a Slope, Steps 1–15, 21	99–102; 106
	Inv 1.2	Water on a Slope, Steps 16–20, 22—Readings, Video, Tutorial	103–107
	Inv. 1.3	Soaking Sponges, Steps 1–7, 16–17	112–113; 118
	Inv 1.3	Soaking Sponges, Steps 8–15—Reading, Tutorial, Multimedia	113–117
4	Inv 1.4	Water in Nature, Steps 1–13; Review Steps 16–17	153–156; 126
	Inv 1.4	Water in Nature, Steps 14–15—Reading	122–124
5	Inv 1.4	I-Check 1, Step 18 (Later plan self-assessment)	127
6	Inv 2.1	Measuring Temperature, Steps 1–9	149–150
7	Inv 2.1	Measuring Temperature, Steps 10–17	151–153
	Inv 2.1	Measuring Temperature, Steps 18–21—Reading	154–155
8	Inv 2.2	Build a Thermometer, Steps 1–19	159–162
9	Inv 2.3 Inv. 2.5	Sinking and Floating Water, Steps 1–13 Water Outdoors, <mark>Review Steps 10–11</mark>	165–167
	Inv 2.3	Sinking and Floating Water, Steps 14–18	168–170
	Inv 2.4	Water as Ice, Steps 1–6	174–175
	Inv 2.4	Water as Ice, Steps 7–15	175–177
	Inv 2.4	Water as Ice, Steps 16–20	175–178
	Inv 2.4	Water as Ice, Steps 21–23—Reading	179–180
	Inv 2.5	Water Outdoors, Steps 1–9	184–186
10	Inv 2.5	I-Check 2, Step 12 (Later plan self-assessment)	187
11	Inv 3.1	Measuring Weather, Steps 1–10	208–211
*12	Inv 3.1	Measuring Weather, Steps 11–13, need 3 days of data	211-212
*13	Inv 3.1	Measuring Weather, Steps 14–20, need 7 days of data	213–215

WATER AND CLIMATE

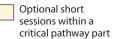
CONTACT YOUR SALES REPRESENTATIVE IF YOUR DISTRICT NEEDS A CUSTOMIZED CRITICAL PATHWAY.

WATER AND CLIMATE (continued)

SESSION	INV./PART	CRITICAL PATHWAY	IG PAGES
14	Inv 3.2	Evaporation, Steps 1–3	218
15	Inv 3.2	Evaporation, Steps 4–8; 11	219–220; 222
	Inv 3.2	Evaporation, Steps 9–10—Reading	221
	Inv 3.3	Surface Area, Steps 1–4	225–226
	Inv 3.3	Surface Area, Steps 5–10, needs to be a few days later	226–227
	Inv 3.3	Surface Area, Steps 11–13—Reading	228
	Inv 3.4	Evaporation Locations Steps 1–21; Focus on Experiment	231–232
16	Inv 3.5	Condensation, Steps 1–9	241–243
17	Inv 3.5	Condensation, Steps 10–17	244-245
18	Inv 3.5	Condensation, Steps 18–21; Review Steps 22–24	246–247; 248
19	Inv 3.5	I-Check 3, Step 25 (Later plan self-assessment)	249
20	Inv 4.1	Seasonal Weather, Steps 1–7	265–267
21	Inv 4.1	Seasonal Weather, Steps 8–14	267–269
22	Inv 4.2	Describing Climate, Steps 1–10	272–274
23	Inv 4.2	Describing Climate, Steps 11–17	275–277
24	Inv 4.3	Weather-Related Natural Hazards, Steps 1–10	281–283
25	Inv 4.3	Weather-Related Natural Hazards, Steps 11–16	284–285
26	Inv 4.3 Inv 5.1 Inv 5.3	Review Steps 17–20 for Inv 4 Water in Earth Materials, Steps 12–16 Review Step 27 for Module	286–287 308–310 330–331
		Water in Earth Materials, Steps 1–11—Focus on Experiment	304–307
27	Inv 5.3	I-Check 4 or Posttest, Inv 4.3 Step 20/Inv 5.3, Step 28	287 or 331
	Inv 5.2	Water in Soil, Steps 1–21—Focus on Environmental Literacy	314–317
	Inv 5.3	Waterwheels, Steps 1–28—Focus on Engineering	323–331

Investigation sessions, with references to the pages and step numbers in the *Guide*

Optional short sessions within a critical pathway part Entire parts of the investigation that are not included in this critical pathway; these activities provide additional opportunities to deepen the learning experience


MOTION AND MATTER

SESSION	INV./PART	CRITICAL PATHWAY	IG PAGES
1		Survey—Assessment for prior knowledge	296
2	Inv 1.1	Two Forces, Steps 1–6	94–96
3	Inv 1.1	Two Forces, Steps 7–14	96–99
4	Inv 1.1	Two Forces, Steps 15–18	100–101
5	Inv 1.2	Magnetic Force Investigation, Steps 1–10	105–107
6	Inv 1.2	Magnetic Force Investigation, Steps 11–14	107–109
7	Inv 1.3	More about Forces, Steps 1–8 (Can omit Step 7 videos)	113–116
8	Inv 1.3	More about Forces, Steps 9–14	117–118
9	Inv 1.3	More about Forces, Review Steps 15–16	119
10	Inv 1.3	I-Check 1, Step 17 (Later plan self-assessment)	120
11	Inv 2.1	Wheel-and-Axle System, Steps 1–11	135–137
12	Inv 2.1	Wheel-and-Axle System, Steps 12–18	138–139
13	Inv 2.2	Predicting Motion of New Systems, Steps 1–6	142–143
	Inv 2.2	Predicting Motion of New Systems, Steps 7–11—Investigation	143–144
14	Inv 2.2	Predicting Motion of New Systems, Steps 12–13, 17	144–145, 147
	Inv 2.2	Predicting Motion of New Systems, Steps 14–15—Reading	146
	Inv 2.2	Predicting Motion of New Systems, Step 16—Online activity	147
15	Inv 2.3	Twirly Birds, Steps 1–13	151–155
16	Inv 2.3	Twirly Birds, Steps 14–17	155–156
17	Inv 2.3	Twirly Birds, Steps 18–23	156–157
18	Inv 2.4	Tops, Steps 1–10; Review Steps 18–19	161–163, 166–67
	Inv 2.4	Tops, Steps 11–17—Extended Investigation, Reading	163–165
19	Inv 2.4	I-Check 2, Step 20 (Later plan self-assessment)	167

SESSION	INV./PART	CRITICAL PATHWAY	IG PAGES
20	Inv 3.1	From Here to There, Steps 1–11	182–184
21	Inv 3.1	From Here to There, Steps 12–18	185–186
	Inv 3.2	Distance Challenge, Steps 1–7—Review measuring distance	190–191
22	Inv 3.2	Distance Challenge, Steps 8–16 (Step 10 optional)	192–193
	Inv 3.2	Distance Challenge, Steps 17–22—Reading, Online Activities	194–195
23	Inv 3.3	Investigating Start Position, Steps 1–10	199–201
24	Inv 3.3	Investigating Start Position, Steps 11–14	202–203
25	Inv 3.3	Investigating Start Position, Steps 15–16	204–205
26	Inv 3.4	Cart Tricks, Steps 1–6	208–209
27	Inv 3.4	Cart Tricks, Steps 7–12; Review Steps 13–15	209–212
28	Inv 3.4	I-Check 3, Step 16 (Later plan self-assessment)	212
29	Inv 4.3	Module Review, Step 17 (Inv 4.3)	250
30	Inv 4.3	Posttest	250
	Inv 4.1	Mixing Solids and Liquids, Steps 1–18	227–230
	Inv 4.2	Reactions, Steps 1–19	236–242
	Inv 4.3	Metric Field Day, Steps 1–14	246–248

MOTION AND MATTER (continued)

Investigation sessions, with references to the pages and step numbers in the *Guide*

Entire parts of the investigation that are not included in this critical pathway; these activities provide additional opportunities to deepen the learning experience

STRUCTURES OF LIFE

SESSION	INV./PART	CRITICAL PATHWAY	IG PAGES
1	Inv 1.1	Seed Search, Steps 1–2; 10–13; 22	99, 102–104, 107
	Inv 1.1	Seed Search, Steps 3–9	99–101
	Inv 1.1	Seed Search, Steps 19–21—Focus on Reading	105–107
2	Inv 1.2	The Sprouting Seed, Steps 1–16	112-116
3	Inv 1.2	The Sprouting Seed, Step 17 (Session 5 happens 6 days later; short observations every day)	116
4*	Inv 1.2	The Sprouting Seed, Steps 18–20 (after 6 days); Step 25	116–117, 119
	Inv 1.2	The Sprouting Seed, Steps 21–24—Focus on Reading	118–119
	Inv 1.3	Seed Soak, Steps 1–2, 4–8	122–123
5	Inv 1.3	Seed Soak, Steps 3, 9–17	122, 124–126
	Inv 1.3	Seed Soak, Steps 18–20—Focus on Reading	127–129
	Inv 1.4	Seed Dispersal, Steps 1–20—Outdoor, engineering, reading	134–138
6	Inv 1.4	Seed Dispersal, Review Steps 21–22	139–140
7	Inv. 1.4	I-Check 1, Step 23 (Later plan self-assessment)	140
8	Inv. 2.1	Germination and Growth, Steps 1–9	157–159
9	Inv. 2.1	Germination and Growth, Steps 10–13	159–160
10	Inv 2.1 Inv 2.2	Germination and Growth, Steps 14–17 Life Cycle of the Bean, Steps 1–3	161–162 166
	Inv 2.1	Life Cycle of the Bean, Steps 4–5—Video, Argumentation	167
11*	Inv 2.2	6–7 weeks later: Life Cycle of the Bean, Steps 6–18	168–171
	Inv 2.2	Life Cycle of the Bean, Steps 19–20—Focus on Reading	172
12*	Inv 2.2	Life Cycle of the Bean, Steps 21–24	173
	Inv 2.3	Roots and Shoots, Steps 1–16—Focus on Outdoor Investigation	177–180
13*	Inv 2.3	Roots and Shoots, Review Steps 17–18	181
14*	Inv 2.3	I-Check 2, Step 19	182
15	Inv 3.1	Crayfish or Hissing Cockroach Structures, Steps 1–9	208–211
16	Inv 3.1	Crayfish or Hissing Cockroach Structures, Steps 10–20, 27	211–213, 217
	Inv 3.1	Crayfish or Hissing Cockroach Structures, Steps 21–26—Media	214–216

*Indicates the need to allow for growth time

STRUCTURES OF LIFE (continued)

SESSION	INV./PART	CRITICAL PATHWAY	IG PAGES
17	Inv 3.2	Characteristics and Adaptation, Steps 1–7	222-223
18	Inv 3.2	Characteristics and Adaptation, Steps 8–9	223
19	Inv 3.2	Characteristics and Adaptation, Steps 10–17	224–229
20	Inv 3.2	Characteristics and Adaptation, Steps 18–25	230-232
21	Inv 3.2	Characteristics and Adaptation, Steps 26–35	233-236
22	Inv 3.2	Characteristics and Adaptation, Steps 36–39	237–238
23	Inv 3.3	Territorial and Group Behavior, Steps 1–9	242-244
24	Inv 3.3	Territorial and Group Behavior, Steps 10–17	244-245
25	Inv 3.3	Territorial and Group Behavior, Steps 18, 21, 24	246-248
	Inv 3.3	Territorial and Group Behavior, Steps 19–20, 22–23, 25—Media	247–250
	Inv 3.4	Comparing Animals, Steps 1–14, 16–17—Outdoor Investigation	254–259
26	Inv 3.4	Comparing Animals, Steps 15, 18–22	257, 260–261
27	Inv 3.5	Food Chains, Steps 1–16	265–268
28	Inv 3.5	Food Chains, Steps 17–19, Review Steps 21	269–270, 272
29	Inv 3.5	I-Check 3, Step 22 (Later plan self-assessment)	273
30	Inv 4.1	Counting Bones, Steps 1–9	297–299
31	Inv 4.1	Counting Bones, Steps 10–20	299-300
32	Inv 4.1	Counting Bones, Steps 21–29, 33	301–302, 304
	Inv 4.1	Counting Bones, Steps 30–32—Focus on Reading, Online Activity	303–304
33	Inv 4.2	Owl Pellets, Steps 1–10	308-309
34	Inv 4.2	Owl Pellets, Steps 11–16	310
35	Inv 4.2	Owl Pellets, Steps 17–19, 22, 27 (Steps 20–21 video optional)	311-314
13–16*	Inv 2	AFTER 6–7 WEEKS, FINISH INV 2, REVIEW, AND I-CHECK 2	168–73, 181–823
	Inv 4.2	Owl Pellets, Steps 23–26—Focus on Readings and Discussion	313–314
	Inv 4.3	Joints and Muscles, Steps 1–48—Focus on Modeling	319–329
	Inv 4.4	Fingerprints, Steps 1–24—Analzying and Interpreting Data	333–341
	Inv 4.4	Posttest, Step 25—Assessment	342

*Indicates the need to allow for growth time

Investigation sessions, with references to the pages and step numbers in the *Guide*

Optional short sessions within a critical pathway part Entire parts of the investigation that are not included in this critical pathway; these activities provide additional opportunities to deepen the learning experience

Diverse Learning Needs Designed for All Learners

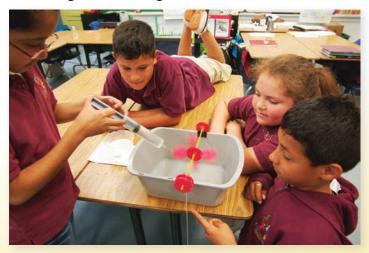
Access and Equity

The FOSS Program has been designed to maximize the science learning opportunities for all students, including those who have traditionally not had access to or have not benefited from equitable science experiences—students with special needs, ethnically diverse learners, English learners, students living in poverty, girls, and advanced and gifted learners. FOSS is rooted in a 30-year tradition of multisensory science education and informed by recent research on UDL and culturally and linguistically responsive teaching and learning. See the **Access and Equity** chapter on FOSSweb for strategies and suggestions.

English Language Development (ELD)

The FOSS active investigations, science notebooks, *FOSS Science Resources* articles, and formative assessments provide rich contexts in which students develop and exercise thinking and communication in both science and language arts. Students experience the natural world in real and authentic ways and use language to inquire, process information, and communicate their thinking about scientific phenomena.

Strategies for Effective Learning Engaging Students


English Language Art Connections

FOSS leverages the natural connection between science and language arts. Students read articles and think critically to enhance their understanding. Students practice ELA skills as well as scientific thinking by organizing their thoughts in a science notebook.

Engineering

FOSS provides meaningful engineering design challenges to students across the grade bands. Students take on the role of scientists to problem-solve and then take on the role of engineers to design and innovate.

Environmental Literacy FOSS throws open the classroom door and takes students outdoors to apply scientific principles to natural systems.

Custom Professional Learning

FOSS can help you build a customized professional learning plan for your district, through its experienced network of consultants to facilitate workshops and sustain the progress of your implementation through ongoing support.

SOUTH CAROLINA FOSS NEXT GENERATION K-8 SCOPE AND SEQUENCE

Grade		Integrated Middle Grades							
	Heredity and Adaptation	Electron	agnetic rce	🚷 🎨 Waves		🎨 🔇 Planetary Science		Diversity of Life Online (Investigation 6)	
6–8	Populations and Ecosystems		Populations and Chemical I		ns	🋞 🍖 Gravity and Kinetic Energy	🛞 🎨 Variables and Design	Earth History Online (Investigation 8)	
	🛞 💮 🄇 Weather and Wa		History Diversity of Life		() Human Systems Interactions	Wave Models			
*Half-length co	ourses 🧞 Physical	Science cont	ent 🌔	Earth Science co	ontent	Tife Science	e content 🥀 Eng	gineering content	
Grade	Physical Science Earth				arth	rth Science Life Science			
5	Mixtures ar	d Solutio	ons	Earth and Sun		Living Systems			
4	Ene	rgy		Soils, Rocks, and Landforms		Environments			
3	Motion a	nd Matte	r	Water and Climate		Structures of Life			
2	Solids and Liquids			Pebbles, Sand, and Silt		Insects and Plants			
1	Sound and Light			Air and Weather		Plants and Animals			
К	Materials and Motion			Trees and Weather		Animals T	wo by Two		
PreK	Observing Nature								